
PARABOLIC GEOMETRIES
FOR PEOPLE THAT LIKE PICTURES

LECTURE 9: PROJECTIVE GEOMETRY

JACOB W. ERICKSON

Have you ever wondered what it is like to move around inside a
painting? It’s a fun and evocative exercise in the imagination, and it
was something I remember thinking about often as a child. However, as
a child, I was ill-equipped to understand the geometry of the situation,
or even what geometry means in this case.

In today’s lecture, we’ll be exploring this two-dimensional projective
geometry and its higher-dimensional analogues. In outline, our plan is
the following:

• Explain what geometry means for a painting
• Verify that the geometry is parabolic
• Describe how to move around within projective geometry
• Discuss what geodesics in the geometry look like

By the end of the lecture, we should have a decent idea of what it’s
like to move around inside the geometry of a painting. In particular,
we’ll have a better picture of what parabolic model geometries look
like; we will further supplement this picture next time, when we talk
about conformal geometry.

Figure 1. A two-dimensional image depicting a three-
dimensional scene, with a pond and pine tree next to each
other and a mountain range in the background, behind
which is a setting sun
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1. The geometry of a painting

Let’s imagine a landscape painting: there is a pond with a small pine
tree next to it, and behind these is a majestic mountain range, beyond
which is a setting sun.

Our use of the words “behind” and “beyond” here suggests that,
while the painting itself is two-dimensional, we think of the scene
depicted as occurring in three dimensions. How do we get the two-
dimensional image from the three-dimensional scene?

Figure 2. Each point of the canvas corresponds to a
sight-line between the eye of the painter and a point in
the scene

Let’s suppose that the landscape occurs inside of R3, and that the
painter observes the scene through their eye, which we place at the
origin in R3. For each point x ∈ R3 in the scene, there is a unique line
⟨x⟩ = Rx through the origin that also contains this point; we call this
line the sight-line through x. When the painter commits this scene
to their canvas, they are identifying each point of their canvas with
a corresponding sight-line, effectively projecting the three-dimensional
scene down to a two-dimensional image.

Since the geometry comes from these sight-lines, its symmetries will
be those that preserve them. A transformation that preserves lines
in R3 and preserves the origin (where the eye is) is going to be an
element of GL3R. However, since the sight-lines are what we’re really
interested in and the center Z(GL3R) = R×1 sends each line through
0 to itself, we want to ignore these central elements. Thus, the model
group of this geometry is GL3R/R×1 = PGL3R.

The model group PGL3R acts transitively on the projective plane
RP2, also known as the space of sight-lines in R3. Thus, defining P to
be the stabilizer of the sight-line through [ 1 0 0 ]⊤, we get a bijection
between PGL3R/P and RP2. In short, our model for 2-dimensional
projective geometry is (PGL3R, P ).

More generally, we can consider m-dimensional projective geometry,
which corresponds to the geometry of sight-lines inside of Rm+1. In
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that case, our model is (PGLm+1 R, P ), where

P :=

{(
a α
0 A

)
∈ PGLm+1 R : a ∈ R×, α⊤ ∈ Rm, A ∈ GLm R

}
is, again, the stabilizer of [ 1 0 ··· 0 ]⊤.

2. Parabolicity of projective geometry

The Killing form on pglm+1R := glm+1R/R1, where by definition
elements of pglm+1R are equivalent if and only if they differ by a scalar
multiple of the identity matrix, is given by

ŋ
( ( −tr(R) α

v R

)
,
( −tr(S) β

w S

) )
= 2(m+ 1)

(
tr(R)tr(S) + tr(RS)

+ α(w) + β(v)
)
,

so

ŋ
( ( −tr(R) α

0 R

)
,
( −tr(S) β

w S

) )
= 2(m+ 1)

(
tr(R)tr(S) + tr(RS) + α(w)

)
,

which vanishes for all
( −tr(R) α

0 R

)
∈ p precisely when S = 0 and w = 0.

Thus, p⊥ is the abelian subalgebra {( 0 α
0 0 ) : α⊤ ∈ Rm}, hence p is

parabolic.
Choosing our Cartan involution θ to be given by X 7→ −X⊤, so that

θ
(
( r α
v R )

)
=

(
−r −v⊤

−α⊤ −R⊤

)
,

we get a grading of pglm+1R given by

g−1 = g− := {( 0 0
v 0 ) ∈ pglm+1R : v ∈ Rm} ,

g0 := {( r 0
0 R ) ∈ pglm+1R : r ∈ R, R ∈ glmR}

=
{( −tr(S) 0

0 S

)
∈ pglm+1R : S ∈ glmR

}
,

and

g1 = p+ :=
{
( 0 α
0 0 ) ∈ pglm+1R : α⊤ ∈ Rm

}
.

It is worth drawing attention to the fact that g− and p+ are abelian
in this case, so that we only have three grading components. The
horospherical subgroups

G− := {( 1 0
v 1 ) ∈ PGLm+1R : v ∈ Rm}

and

P+ :=
{
( 1 α
0 1 ) ∈ PGLm+1R : α⊤ ∈ Rm

}
are, in particular, also abelian.

The grading element for this grading is given by

Egr :=
1

m+1
(m 0

0 −1 ) =
1

m+1
(m 0

0 −1 ) +
1

m+1
( 1 0
0 1 ) = ( 1 0

0 0 ),
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where again, elements of pglm+1R are equivalent whenever they differ
by a scalar multiple of the identity matrix. From this, we can see that

G0 := ZP (Egr) =
{
( a 0
0 A ) ∈ PGLm+1R : a ∈ R×, A ∈ GLm R

}
=

{(
1

det(S)
0

0 S

)
∈ PGLm+1R : S ∈ GLm R

}
is the neutral subgroup.

Momentarily, we will also be interested in a specific normal subgroup
Gss

0 ⊴ G0, the semisimple part of G0, given by

Gss
0 :=

{
( 1 0
0 A ) ∈ PGLm+1R : A ∈ SL±

m R
}
,

where SL±
m R is the Lie group of linear transformations of Rm with de-

terminant either +1 or −1. This subgroup Gss
0 is normal in G0, and

moreover, G0 decomposes as G0 = exp(REgr)G
ss
0 , where exp(REgr) is

the image of the one-parameter subgroup generated by Egr. In partic-
ular, G0/G

ss
0 ≃ P/(Gss

0 P+) ≃ exp(REgr).

3. The pedestrian perspective

As before, we’d like to think of our model group PGLm+1 R as the
space of configurations for ourselves as pedestrians1 inside of the ge-
ometry of our model. To do this, let’s return to the idea of walking
around inside a painting.

Figure 3. We can reconstruct the (m+1)-dimensional
scene in an m-dimensional painting by undoing the iden-
tification of each sight-line with a point; the result is
an embedding of the (m + 1)-dimensional scene into
the principal exp(REgr)-bundle PGLm+1 R/Gss

0 P+ over
PGLm+1R/P ∼= RPm

Paintings don’t typically depict what is going on both in front and
behind the painter, so it makes sense to assume the scene in Rm+1

depicted in an m-dimensional painting takes place in some half-space
{x ∈ Rm+1 : α(x) > 0} for some α ∈ (Rm+1)∨. Every sight-line for the
scene intersects this half-space in a ray, so if we wanted to recreate the

1Note that I’m returning to the term “pedestrian” rather than “observer” here,
since the “observer perspective” could easily be confused with the perspective of
the eye viewing the sight-lines.
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(m+ 1)-dimensional scene, then we could just imagine it as occurring
in the R+-bundle over PGLm+1R/P ∼= RPm given by undoing the
identification of the ray with a point. This R+-bundle corresponds
to the quotient by {±1} of the canonical R×-bundle Rm+1 \ {0} over
RPm = (Rm+1 \ {0})/R×; since half-spaces embed into this R+-bundle
by inclusion into Rm+1 \ {0}, we lose nothing by assuming the scene
happens in this bundle.

Again, PGLm+1R acts transitively on the space of sight-lines. The
subgroup of GLm+1R fixing the sight-line through [ 1 0 ··· 0 ]⊤ pointwise
is
{
[ 1 α
0 A ] : α

⊤ ∈ Rm, A ∈ GLm R
}
, and under the quotient by R×1, the

image of this subgroup in PGLm+1R is precisely Gss
0 P+. Thus, the

R+-bundle over RPm given by undoing the identification of sight-lines
with points on the canvas is precisely the principal exp(REgr)-bundle
PGLm+1 R/Gss

0 P+ over PGLm+1 R/P ∼= RPm.
In other words, we imagine the (m + 1)-dimensional scene depicted

in an m-dimensional painting as occurring within the space of the
principal exp(REgr)-bundle PGLm+1R/Gss

0 P+, with right-translation
by exp(tEgr) corresponds to moving closer to the eye if t < 0 and far-
ther away if t > 0. Note that, from the perspective of the eye, we look
smaller when we move farther away and bigger when we move closer.

Figure 4. Knowing the positioning of the canvas gives
us a family of affine hyperplanes in PGLm+1 R/Gss

0 P+,
and our configuration along one of these hyperplanes
corresponds to an element of the principal G0-bundle
PGLm+1R/P+ over PGLm+1 R/P

By knowing the position of the canvas, we can also describe a fam-
ily of affine hyperplanes in PGLm+1 R/Gss

0 P+ that we imagine to be
parallel to the canvas (and, in particular, transverse to the sight-line
through each point of the scene). Through each point of the scene is
one of these affine hyperplanes, and thinking of ourselves as pedestrians
within the scene, we can configure ourselves along the affine hyperplane
through our point. The choice of configuration gives an element of the
principal Gss

0 -bundle PGLm+1R/P+ over PGLm+1R/Gss
0 P+, the space
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where the scene takes place; this space PGLm+1R/P+ is then also a
principal G0-bundle over PGLm+1R/P .

Figure 5. Right-translating by an element of P+ in
PGLm+1R amounts to tilting the choice of affine hyper-
plane through a point in the scene

Finally, different ways of positioning the canvas result in different
families of affine hyperplanes. Given an initial choice of hyperplane
through a given point, though, all of the other choices of hyperplane
can be obtained by “tilting” the initial one. The “unipotent tilts”
p ∈ P+ run through all of the different choices of hyperplane transverse
to the sight-line, so the space of choices of hyperplane is the principal
P+-bundle PGLm+1R over PGLm+1 R/P+.

Thus, we have arrived at the principal P -bundle PGLm+1R over
PGLm+1 R/P . Having built it up from these smaller bundles, we have
a fairly good picture of what a configuration within PGLm+1R looks
like, and from this, it’s not hard to see how motion works in this case.

Figure 6. Right-translating by elements ofG− amounts
to translation within the affine hyperplane through the
point in the scene, while right-translating by an element
of exp(REgr) amounts to moving along the sight-line
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An element g ∈ PGLm+1R determines a choice of affine hyperplane
within the (m + 1)-dimensional scene of an m-dimensional painting,
and as we might guess from last time, translation along this affine
hyperplane amounts to right-translation by elements of G−. Then,
right-translating by elements of Gss

0 corresponds to changing our frame
within this affine hyperplane, while right-translating by an element of
exp(REgr) amounts to moving along the sight-line through our point in
the scene; from the perspective of the eye, right-translation by an ele-
ment of exp(REgr) also corresponds to rescaling the affine hyperplane.
Finally, right-translating by an element of P+ tilts our choice of affine
hyperplane.

4. Geodesics

The choice of affine hyperplane described above corresponds to a
choice of affine patch in projective space. Inside of a given affine patch
are affine geodesics, corresponding to the images t 7→ q

P
(g exp(tv)) for

v ∈ g−. However, the images of these aren’t going to be full copies
of geodesics on RPm in the sense we’d usually mean, since they are
restricted to an affine patch.
A full (unparametrized) geodesic in RPm corresponds to a choice

of (two-dimensional) plane through the origin inside of Rm+1. More
specifically, thinking of RPm as the space of one-dimensional subspaces
of Rm+1, a geodesic is the set of all one-dimensional subspaces lying in a
given two-dimensional subspace. This is analogous, and in fact related,
to the situation in spherical geometry, where we defined great circles
to be intersections of the unit sphere with two-dimensional subspaces.
Note, as we did with spherical geometry, that such a definition is geo-

metric for the model: elements of R×1 preserve every subspace of Rm+1,
and elements of GLm+1R, being invertible linear transformations, send
two-dimensional subspaces to two-dimensional subspaces, so PGLm+1R
sends two-dimensional subspaces to two-dimensional subspaces.

Conveniently, the affine geodesics inside a given affine patch are the
intersections of full geodesics with that affine patch. Indeed, identifying
PGLm+1 R/P with RPm,

q
P

(
g exp (t( 0 0

v 0 ))
)
= g · q

P

(
( 1 0
tv 1 )

)
∈ ⟨g · ( 1

0 ), g · ( 0
v )⟩ .

This situation is noteworthy; in other parabolic model geometries,
the geodesics corresponding to one-parameter subgroups generated by
elements of g− might not correspond to particularly meaningful curves
in the base manifold at all. The corresponding motion in the model
group will always be geometrically meaningful though, so it is still
worthwhile if we view things from our observer perspective.


